

Mahatma Gandhi Vidyamandir's Loknete Vyankatrao Hiray Arts, Science and Commerce College, Panchavati, Nashik-422003 (Affiliated to SPPU, Pune, Reaccredited with 'A' grade, Recipient of Best College Award by SPPU)

# **Programme Specific Outcomes,**

&

### **Course Outcomes of M.Sc**

## **Department of Electronic Science**

Academic Year

2021-22

#### **Programme Specific Outcomes: M.Sc. Electronic Science**

|   | Name of the Programme: M.Sc. Electronics                                                               |  |  |
|---|--------------------------------------------------------------------------------------------------------|--|--|
|   | Program Specific Outcomes                                                                              |  |  |
|   | At the end of the programme, student will be able to                                                   |  |  |
| 1 | Identify, formulate, solve, analyze and interprete the problems in various disciplines of electronics  |  |  |
|   | using knowledge of mathematics and science.                                                            |  |  |
|   | Design and conduct, manage electronic systems or processes that conforms to a given                    |  |  |
| 2 | specification within ethical and economic constraints.                                                 |  |  |
|   | Ability to function as a member of a multidisciplinary team with sense of ethics, integrity and social |  |  |
| 3 | responsibility.                                                                                        |  |  |
| 4 | Ability to communicate effectively in term of oral and written communication skills.                   |  |  |
| 5 | Recognize the need for, and be able to engage in lifelong learning.                                    |  |  |
|   | Ability to use techniques, skills and modern technological/scientific/engineering software/tools for   |  |  |
| 6 | professional practices.                                                                                |  |  |

#### **Course Outcomes: M.Sc. Electronic Science**

| Class : M.Sc. Electronic Science |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|----------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                  | Semester-I                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| Paper                            | Course code & course title                                     | At the end of the course, student will be able to                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| I                                | Mathematical<br>Methods in<br>Electronics using C<br>(ELUT111) | Familiarise with role of differential equations in applied<br>electronics<br>Understand mathematical tools and techniques for network<br>analysis<br>Learn the methods of analysis for CT and DT signals and<br>systems using Laplace and Z- transform<br>Discribe the concept of mathematical modeling of simple<br>electrical circuits.<br>Solve mathematical methods using C programming.<br>Understand various advanced features, graphics and<br>interfacing & concept of object oriented programming in C++ |  |  |
| II                               | Analog Circuit<br>Design (ELUT112)                             | Understand the characteristics and working of electronic<br>devices like diodes, BJTs, FETs, and MOSFETs<br>Discribe the various anolog devices.<br>Learn the wideband and narrowband amplifiers using BJT<br>Develop skills in design and analysis of analog circuits<br>Learn the operational amplifier and designs various opamp<br>applications<br>Understand practical design aspect for different application of<br>Opamp.                                                                                  |  |  |
| 111                              | Digital System<br>Design (ELUT113)                             | Learn VERILOG language<br>Design the sequential and combinational logic circuits.<br>Understand and develop gate level modelling, Data flow<br>modelling and behavioural modelling for different<br>combinational and sequential circuits<br>Learn use of delay, Test bench,task and Function in VERILOG.                                                                                                                                                                                                         |  |  |

|    |                                  | Study PLD, CPLD, FPGA and their applications                      |
|----|----------------------------------|-------------------------------------------------------------------|
|    |                                  | Learn the types memories and it's data storage principle,         |
|    |                                  | control inputs, and timings, applications of various applications |
|    |                                  | Undestand PIC 18F microcontrollers architecture and pinout        |
|    |                                  | diagram                                                           |
|    | Fundamentals and                 | Learn the instruction set and addressing modes                    |
|    | applications of PIC              | Compare PIC with other microcontrollers and microprocessors       |
| IV | microcontrollers                 | Study the assembly language programming                           |
|    | (Elective Theory                 | Learn generation of delay and wave forms. PWM control etc.        |
|    | Course 1) ELDT114                | Design and develop the Hardware interface for LEDs,               |
|    |                                  | 7segment display, LCD, Keypad interfacing, dc and stepper         |
|    |                                  | motor.                                                            |
|    |                                  | Use of analog and digital multi meters, various types of power    |
|    |                                  | supply, CRO, Function generator in laboratory.                    |
|    |                                  | Design, build, test and analyse the circuit with result of each   |
|    |                                  | experiments                                                       |
|    | Practical Course 2               | Familarize with Xilinix 9. 2 ISE simulator tool                   |
| V  |                                  | Design and perform the Verilog Programming in different           |
|    | (Compulsory<br>Course) (ELUP115) | modelling styles like gate level modelling, Data flow modelling   |
|    |                                  | and Behavioural modelling                                         |
|    |                                  | Familarize with MATLAB R12/ R2014 software                        |
|    |                                  | Understand the MATLAB Programming language and design             |
|    |                                  | MATLAB code for given circuit and analysed result.                |
|    |                                  | Understand PIC 18 Microcintroller developing board                |
|    |                                  | Design and execute assembly/ C programs using MPLAB               |
|    |                                  | software.                                                         |
| VI | Practical Course 1               | Develop interfacing with PIC microcontroller                      |
| v. | (Elective Subject 1)<br>ELDP114  | Learn step wise burn the program by use of Pickit2 programmer.    |
|    |                                  | Study the Hardware interface for LEDs, 7segment display, LCD,     |
|    |                                  | Keypad interfacing, dc and stepper motor                          |

|     |                                                                         | Learn basic terms concepts and definitions                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                                                         | Semester-II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| I   | Applied<br>Electromagnetics,<br>Microwaves and<br>Antennas<br>(ELUT121) | Understand the concepts of electromagneticsDescribe the theory of transmission lines and wave guidesStudy basics of antenna and various parameters of antennasUndersand rectangular waveguide and circular waveguideLearn various methods of generation of microwavesClassify the various types of antennas and generation ofmicrowaves                                                                                                                                                                |
| II  | Instrumentation<br>and<br>Measurement<br>Techniques<br>(ELUT122)        | Understand the configurations and functional descriptions of<br>measuring instruments<br>Learn the basic performance characteristics of instruments<br>Describe the working principles of various types of sensors and<br>transducers and their use in measuring systems<br>Study the techniques involved in various types of instruments<br>Study the static and dynamic characteristics of measurment<br>systems.<br>Learn the process parameter for different application of<br>measurement system. |
| III | Foundation of<br>Semiconductor<br>Devices (ELUT123)                     | Understand crystal structure of solids with reference to<br>semiconductors.<br>Introduce quantum and statistical mechanics<br>Learn the characteristics of semiconductor devices<br>Study semiconductor in equilibrium and non-equilibrium state<br>Describe the theory of diode, transistor and FETs<br>Solve problems based on basics of semiconductor                                                                                                                                               |
| IV  | Elective Theory<br>Course 2:<br>Fundamentals and<br>applications of AVR | Understand the architecture, instruction set, addressing<br>modes AVR microcontrollers.<br>Understand and develop assembly language program like<br>arithmatic, logical, code converter, data transfer, ADC, timer<br>and I/O ports                                                                                                                                                                                                                                                                    |

|    | microcontrollers    | Study the memory organization, timers, PWM, I/O ports, ADC,     |
|----|---------------------|-----------------------------------------------------------------|
|    | (ELDT124)           | interrupts, serial communication of AVR microcontroller         |
|    |                     | Learn embedded C programming for AVR microcontroller            |
|    |                     | Build and analyse interfacing circuit like Displays, Motors,    |
|    |                     | DAC, ADC, RTC                                                   |
|    |                     | Learn software techniques to execute codes in to the systems    |
|    |                     | Use of analog and digital multi meters, various types of power  |
|    |                     | supply, CRO, Function generator in laboratory.                  |
|    |                     | Design, build, test and analyse the circuit with result of each |
|    |                     | experiment                                                      |
|    |                     | Familarize with Sensors like LVDT, PT100, Thermocouple,         |
| V  | Practical Course 4  | Pressure sensors                                                |
| v  | (Compulsory         | Understand the theory of Electromagnitics, Microwaves and       |
|    | Course) (ELUP125)   | antennas                                                        |
|    |                     | Familarize with MATLAB R12/ R2014 software                      |
|    |                     | Understand the MATLAB Programming language and perform          |
|    |                     | the experiment and analysed observed result with calculated     |
|    |                     | result for Experiments on Electromagnetics and antennas         |
|    |                     | Understand AVR atmega 16/32 Microcintroller developing          |
|    |                     | board                                                           |
|    |                     | Develop assembly/ C programming language and software use       |
|    |                     | for programming                                                 |
| VI | Practical Course 3  | Learn Interfacing with AVR AtMega 16/32 microcontroller         |
| •  | (Elective course 2) | Learn step wise burn the program through AVRStud/ MPLAB         |
|    | (ELDP124)           | software                                                        |
|    |                     | Study the Hardware interface for LEDs, 7segment display, LCD,   |
|    |                     | Keypad interfacing, dc and stepper motor                        |
|    |                     | Learn basic terms concepts and definitions                      |

|       | Class : M.Sc. Subject -II   |                                                                                                                                                                                                                                   |  |
|-------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|       | Semester-III                |                                                                                                                                                                                                                                   |  |
| Paper | Course code &               | At the end of the course, student will be able to                                                                                                                                                                                 |  |
| гареі | course title                | At the end of the course, student will be able to                                                                                                                                                                                 |  |
|       | Advanced                    | Recall and understand continuous wave/analog method of<br>communication(AM, FM and PM) considering noise, its generation and<br>demodulation techniques<br>Learn different pulse modulation techniques(analog as well as digital) |  |
|       | Communication               | Analyze digital modulation techniques and related correction methods                                                                                                                                                              |  |
| I     | Systems (ELT<br>231)        | Distinguish different radio wave propogation techniques                                                                                                                                                                           |  |
|       |                             | Understand basic theory of antenna and their types as per applications                                                                                                                                                            |  |
|       |                             | Study basics of modern communication techniques like satellite communication and mobile communication                                                                                                                             |  |
|       |                             | Identify different components or blocks in any mechatronic system<br>Understand function of different component of mechatronic and                                                                                                |  |
|       |                             | robotics                                                                                                                                                                                                                          |  |
|       | Mechatronics                | Analyze mechatronic systems using system models and dynamic                                                                                                                                                                       |  |
| II    | and robotics                | responses using transformation methods                                                                                                                                                                                            |  |
|       | (ELT 232)                   | Distinguish different sensing and actuating mechanisms used in mechatronics and robotic systems                                                                                                                                   |  |
|       |                             | Compare different control mechanisms used in robotic systems                                                                                                                                                                      |  |
|       |                             | Apply and analyize driving dynamic equation for robotic.                                                                                                                                                                          |  |
|       | Control System<br>(ELT 233) | Compare different control loop systems such as open loop, closed loop, DCS, SCADA etc.                                                                                                                                            |  |
|       |                             | Analyze the control systems using different mathematical techniques                                                                                                                                                               |  |
|       |                             | such as transfer function and different stability criterion                                                                                                                                                                       |  |
| III   |                             | Analyze and Distinguish different types of analog and digital controllers and control modes                                                                                                                                       |  |
|       |                             | Study the principal of working of the components of control systems.                                                                                                                                                              |  |
|       |                             | Design and analyze the control system using ladder programming.                                                                                                                                                                   |  |
|       |                             | Design, develop and implement control systems for given applications                                                                                                                                                              |  |

|    |                                                      | Learn the bascis of Internet of Things and Framework of IoT.               |
|----|------------------------------------------------------|----------------------------------------------------------------------------|
|    | Fundamentat<br>of Internet of<br>Things (ELT<br>234) | Study the data and knowlege management and use of devices in IoT           |
|    |                                                      | technology.                                                                |
|    |                                                      | Dentify architecture, structure and security as well as privacy aspects    |
|    |                                                      | in IoT                                                                     |
| IV |                                                      | Gain knowlage and study the fundamental of internet of things ( IoT)       |
|    |                                                      | and coomunication capability.                                              |
|    |                                                      | Understand, design and configure Redio Frequency Identifier (RFID)         |
|    |                                                      | networks considering security issues                                       |
|    |                                                      | Learn, design and configure Wireless Sensor Network (WSN)                  |
|    |                                                      | considering security issues                                                |
|    |                                                      | Understand the Ardino /Rasberri pi for the practical impilmentation.       |
|    |                                                      | Learn the installation of the Ardino IDE software and simple               |
|    | Elective                                             | progamming through it.                                                     |
|    | Practical<br>Course (ELP<br>234)                     | Study the basic building blocks of IoT and identify it as per application. |
| V  |                                                      | Familiar with IoT protocols.                                               |
|    |                                                      | Develope interfacing of the input output devices with Ardino               |
|    |                                                      | /Rasberri pi: LED, LCD , Push button.                                      |
|    |                                                      | Design and developed application of IOT; to interface the bluethoot        |
|    |                                                      | device to Ardunio/Rasberri pi.                                             |
|    |                                                      | Use of analog and digital multi meters, various types of power supply,     |
|    |                                                      | CRO, Function generator in laboratory.                                     |
|    |                                                      | Design and develop AM and FM transmission system                           |
|    | Electronics                                          | Design and implement digital modulation systems and pulse                  |
|    | Science                                              | modulation techniques                                                      |
| VI | Practical                                            | Set up and implement mechatronic systems such as flow control or           |
|    | Course (ELP                                          | servo control using basic components like motors, sensors and              |
|    | 235)                                                 | actuators                                                                  |
|    |                                                      | Design , develop and implement controller circuits for identified          |
|    |                                                      | applications                                                               |
|    |                                                      | Learn basic terms concepts and definitions                                 |

|                 |                                                                   | Semester-IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| l<br>(Elective) | PLC<br>Programming<br>and<br>Applications<br>(ELT241 &<br>ELP241) | Understand basics of Programmable Logic Controllers, their working<br>and their programming<br>Design, modify and troubleshoot such control circuits<br>Program PLCs to automate the systems for different applications<br>Explain the use of industrial grade components in automation<br>Understand relay logic diagram and its use in different applications<br>Learn demanding skill required in upcoming Engineers.                                                          |
| l<br>(Elective) | Industrial<br>Training<br>(ELP241*)                               | Choose industry according to interest<br>Understand upcoming requirements in industry/institutions<br>Adopt to new techniques or upcoming technologies<br>Analyze the problem and solve using different techniques<br>Acquire Required skills according to industrial environment<br>Present the workdone in the form of seminar/ presentation and write<br>the report.                                                                                                           |
| 11              | MOOCs<br>Courses<br>(ELT242)                                      | Foster self-directed learning environments to expand autonomy.Learn to manage own time in order to develop intrinsic motivation<br>and commitment to the courseGain to earn credits from MOOCs into institutional degree programsSearch opportunities for students with limited computer and language<br>skills.Learn to complete the weekly assignmentsLearn using new and modern platform for topics which are not in<br>curriculum or on advanced topics like SWAYAM and NPTEL |
| III             | Technical<br>Writing<br>(ELT243)                                  | Utilize the technical writing for the purposes of TechnicalCommunication and its exposure in various dimensions.Understand the nature and objective of Technical Communicationrelevant for the work placeImbibe inputs by presentation skills to enhance confidence in face ofdiverse readers.Evaluate and present gist of the books in the form of book review                                                                                                                   |

|      |            | Prepare documents for thorough understanding of applications and       |
|------|------------|------------------------------------------------------------------------|
|      |            |                                                                        |
|      |            | promote their technical competence                                     |
|      |            | Learn basic concept and definitions                                    |
|      |            | Design hypothesis for their work to be carried out. And Describe the   |
|      |            | underlying theory of experiments in the project work.                  |
|      |            | Perform derivations of theoretical models of relevance for the         |
|      | Project/   | experiments in the project.                                            |
|      |            | Document their results, using correct procedures and protocols.        |
| 1) / |            | Perform a quantitative analysis of experimental data including the use |
| IV   | Internship | of computational and statistical methods where relevant.               |
|      | (ELP244)   | Interpret relationships in graphed data and develop an intuition for   |
|      |            | alternative plotting methods and communicate results from project      |
|      |            | work, orally or in a written laboratory report.                        |
|      |            | Write a project report with literature review and Defend the outcome   |
|      |            | of project work in scientific manner.                                  |